If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+3x^2=161
We move all terms to the left:
2x+3x^2-(161)=0
a = 3; b = 2; c = -161;
Δ = b2-4ac
Δ = 22-4·3·(-161)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-44}{2*3}=\frac{-46}{6} =-7+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+44}{2*3}=\frac{42}{6} =7 $
| 5x.6=20 | | -7+3y=-19 | | -1/2x+x=-5/6-1/3 | | -8x=-6x-18 | | 1/3(+6)=3x-15 | | √2(1+√2)-2=a | | 0.1t−3=5 | | 3x+285-3x=285 | | -3x=4x+63 | | 3(2u+8=60) | | m3− 3=1 | | -2x=-7x-15 | | 2.80+0.75c=7 | | w-6=-4 | | -5+u=-9 | | 3x-6=3x+10 | | 21−x=4x+6 | | 18=5x-6x | | 18=5x+6x | | 4(2a+3)=-3(a-1)=31 | | 35+w=41 | | 18=5x+7x | | 3m-7m=7 | | 3u+3=4u-4 | | -432-6x=12x | | 45-u=36 | | 200(70x-3,560)=-179(150x-19,300) | | 36x=10 | | .5z+6=1.5z+9 | | -5(2r-0.2)+0.5(4r+3)=-64 | | 7=6.w | | x+0.20(4)=0.50(x+4) |